BIOFUELS
STATUS QUO AND FUTURE CHALLENGES – A REVIEW
Abstract
The major international agencies that check the development of society warn about the energy model of the current world, pointing the need of substitution by renewable sources of energy. This condition becomes even more worrying when
perspectives point to a world population of 9 billion people in the next decades and the demand for food that will need. Therefore, competition for fertile land to nutrition and energy ends is already clear today. Bioethanol, a biofuel capable of partially replace gasoline for the high productivity reached, uses mostly renewable sources of energy as sugar cane and corn, increasing the price of these raw materials. New sources for ethanol production are being researched to make it a second-generation biofuel, competitive but not affecting the food production, like animal fatty wastes and inedible oilseeds. This applicability of using wastes and effluents to produce second-generation biofuels is gaining strength in the scientific community and they conduct researches to optimize and expand the scale of production of biofuels from these sources. In this review, we approach the processes used today to produce biofuels, the problems and the new possibilities to break the barriers that hinder this large-scale sustainable production.
Downloads
References
from Palm Oil via Base Catalyzed Transesterification. Procedia
Engineering, v.53, p.7–12, 2013.
AMINI-NIAKI, S. R.; GHAZANFARI, A. Comparison of
fuel and emission properties of petro diesel and sunflower
biodiesel prepared by optimized production variables. Fuel,
v.109, p.384-388, 2013.
ANTCZAK, M. S.; KUBIAK, A.; ANTCZAK, T.; BIELECKI,
S. Enzymatic biodiesel synthesis – Key factors affecting
efficiency of the process; Renewable Energy, v.34, p.1185–94,
2009.
ARAUJO, V. K. W. S.; HAMACHER, S.; SCAVARDA, L. F.
Economic assessment of biodiesel production from waste
frying oils. Bioresource Technology, v.101, p.4415-4422, 2010.
AYDIN, H.; İLKILIÇ, C. Effect of ethanol blending with
biodiesel on engine performance and exhaust emissions in a
CI engine. Applied Thermal Engineering, v.30, p.1199-1204,
2010.
BALAT, M.; BALAT, H. Recent trends in global production
and utilization of bio-ethanol fuel. Applied Energy, v.86,
p.2273-2282, 2009.
BASHA, S. A.; GOPAL, K. R. A review of the effects of
catalyst and additive on biodiesel production, performance,
combustion and emission characteristics. Renewable &
Sustainable Energy Reviews, v.16, p.711-717, 2012.
BEATRIZ, A.; ARAÚJO, Y. J. K.; LIMA, D. P. Glycerol: a brief
history and their application in stereoselective syntheses.
Química Nova, v.34, p.306-319, 2011.
BI, Y.; DING, D.; WANG, D. Low-melting-point biodiesel
derived from corn oil via urea complexation. Bioresource
Technology, v.101, p.1220-1226, 2010.
BORGES, M. E.; DÍAZ, L.; ALVAREZ-GALVÁN, M. C.;
BRITO, A. High performance heterogeneous catalyst for
biodiesel production from vegetal and waste oil at low
temperature. Applied Catalysis B: Environmental, v.102, p.310-
315, 2011.
Brasil. Ministério da Agricultura, Pecuária e Abastecimento.
Portaria Nº
678 of 31 of aug 2011. Diário Oficial da União.
Brasília, DF, 2011.
Brasil. Ministério de Minas e Energia. ANEEL - Agência
Nacional de Energia Elétrica. Atlas de Energia Elétrica do
Brasil. 3º
Edição. Brasília, DF, 2008.
Brasil. Ministério de Minas e Energia. ANP - Agência Nacional
do Petróleo. Law N° 11.097 of 13 jan 2005 – Introdução do
biodiesel na matriz energética brasileira. Brasília, DF, 2005.
BRUNSCHWIG, C.; MOUSSAVOU, W.; BLIN, J. Use of
bioethanol for biodiesel production. Progress in Energy and
Combustion Science, v.38, p.283-301, 2012.
CAPECHI, L.; GALBE, M.; BARBANTI, L.; WALLBERG,
O. Combined ethanol and methane using steam pretreated
sugarcane bagasse. Industrial Crops & Products, v.74, p.255-
262, 2015.
CAVALCANTE, K. S. B.; PENHA, M. N. C.; MENDONÇA,
K. K. M.; LOUZEIRO, H. C.; VASCONCELOS, A. C. S.;
MACIEL, A. P.; SOUZA, A. G.; SILVA, F. C. Optimization of
transesterification of castor oil with ethanol using a central
composite rotatable design (CCRD). Fuel, v.89, p.1172–1176,
2010.
CHEN, X.; KHANNA, M. Explaining the reduction in US
corn ethanol processing costs: Testing competing hypotheses.
Energy Policy, v.44, p.153-159, 2012.
CHEN, Y. H.; LUO, Y. M. Oxidation stability of biodiesel
derived from free fatty acids associated with kinetics of
antioxidants. Fuel Processing Technology, v.92, p.1387-1393,
2011.
CHO, J.; SI, W.; JANG, W.; JIN, D.; MYUING, C.; PARK, S.
Impact of intermediate ethanol blends on particulate matter
emission from spark ignition direct injection (SIDI) engine.
Applied Energy, v.160, p.592-602, 2015.
CHOI, W. J.; HARTONO, M. R.; CHAN, W. H.; YEO, S.
S. Ethanol production from biodiesel-derived crude glycerol
by newly isolated Kluyvera cryocrescens. Applied Microbiology
and Biotechnology, v.89, p.1255-1264, 2011.
COELHO, S. T.; MONTEIRO, M. B.; KARNIOL, M. R. Atlas
de Bioenergia do Brasil. São Paulo: Cenbio; 2012.
CONDON, N.; KLEMICK, H.; WOLVERTON, A. Impacts
of ethanol policy on corn prices: A review and meta-analysis
of recent evidence. Food Policy, v.51, p.63-73, 2015.
CRAGO, C. L.; KHANNA, M.; BARTON, J.; GIULIANI,
E.; AMARAL, W. Competitiveness of Brazilian sugarcane
ethanol compared to US corn ethanol. Energy Policy, v.38,
p.7404-7415, 2010.
DANTAS, G. A.; LEGEY, L. F. L.; MAZZONE, A. Energy from
sugarcane bagasse in Brazil: An assessment of the productivity
and cost of different technological routes. Renewable and
Sustainable Energy Reviews, v.21, p.356-364, 2013.
DE TORRES, M.; OSÉS, G. J.; MAYORAL, J. A.; PIRES,
E. Fatty acid derivatives and their use as CFPP additives in
biodiesel. Bioresource Technology, v.102, p.2590-2594, 2011.
DEBNATH, S.; RAVI, R.; LOKESH, B. R. Optimization of
lipase-catalysed interesterification reaction for modulating
rheological and heat transfer properties of frying oil. Food
Chemistry, v.129, p.1444-1452, 2011.
DIAS, J. M.; ALVIM-FERRAZ, M. C. M.; ALMEIDA, M. F.;
DÍAZ, J. D. M.; POLO, M. S.; UTRILLA, J. R. Selection of
heterogeneous catalysts for biodiesel production from animal
fat. Fuel, v.94, p.418–425, 2012.
DIAS, J. M.; ARAÚJO, J. M.; COSTA, J. F.; ALVIM-FERRAZ,
M. C. M.; ALMEIDA, M. F. Biodiesel production from raw
castor oil. Energy, v.53, p.58-66, 2013.
DIAS, M. O. S.; CUNHA, M. P.; JESUS, C. D. F.; ROCHA, G.
J. M.; PRADELLA, J. G. C.; ROSSELL, C. E. V.; FILHO, R.
M.; BONOMI, A. Second generation ethanol in Brazil: Can it
compete with electricity production? Bioresource Technology,
v.102, p.8954-8971, 2011.
DOSSIN, T. F.; REYNIERS, M. F.; BERGER, R. J.; MARIN,
G. B. Simulation of heterogeneously MgO-catalyzed
transesterification for fine-chemical and biodiesel industrial
production. Applied Catalysis B: Environmental, v.67, p.136–
148, 2008.
ENCINAR, J. M.; SÁNCHEZ, N.; MARTÍNEZ, G.; GARCÍA,
L. Study of biodiesel production from animal fats with
high free fatty acid content. Bioresource Technology, v.102,
p.10907–10914, 2011.
ENWEREMADU, C. C.; RUTTO, H. L. Combustion,
emission and engine performance characteristics of used
cooking oil biodiesel – A review. Renewable & Sustainable
10 Marques et al
Revista Brasileira de Engenharia e Sustentabilidade, v.1, n.1, p.1-12, dez. 2015.
Energy Reviews, v.14, p.2863-2873, 2010.
FAO – Food and Agricultural Organization of United Nations.
Food Outlook: Global Market Analysis – May 2015. Available
at:
in: sep 2015.
FINDLATER, K. M.; KANDLIKAR, M. Land use and secondgeneration biofuel feedstocks: The unconsidered impacts of
Jatropha biodiesel in Rajasthan, India. Energy Policy, v.39,
p.3404-3413, 2011.
FROLKOVA, A. K.; RAEVA, V. M. Bioethanol dehydration:
state of the art. Theoretical Foundations of Chemical
Engineering, v.44, p.545-556, 2010.
GODFRAY, H. C. J.; BEDDINGTON, J. R.; CRUTE, I.
R.; HADDAD, L.; LAWRENCE, J. F. M.; PRETTY, J.;
ROBINSON, S.; THOMAS, S. M.; TOULMIN, C. Food
Security: The Challenge of feeding 9 billion people. Science,
v.327, p.812-818, 2010.
GOG, A.; ROMAN, M.; TOSA, M.; PAIZS, C.; IRIMIE, F.
D. Biodiesel production using enzymatic transesterification
– Current state and perspectives. Renewable Energy, v.39, p.10-
16, 2012.
GUO, M.; SONG, W.; BUHAIN, J. Bioenergy and biofuels:
History, status, and perspective. Renewable and Sustainable
Energy Reviews, v. 42, p. 712–725, 2015.
HAVLÍK, P.; SCHNEIDER, U. A.; SCHMID, E.;
BÖTTCHER, H.; FRITZ, S.; SKALSKÝ, R.; AOKI, K.;
DE CARA, S.; KINDERMANN, G.; KRAXNER, F.;
LEDUC, S.; MCCALLUM, I.; MOSNIER, A.; SAUER, T.;
OBERSTEINER, M. Global land-use implications of first and
second generation biofuel targets. Energy Policy, v.39, p.5690-
5702, 2011.
HAYYAN, A.; ALAM, M. Z.; MIRGHANI, M. E. S.;
KABBASHI, N. A.; HAKIMI, N. I. N. M.; SIRAN, Y. M.;
TAHIRUDDIN, S. Sludge palm oil as a renewable raw
material for biodiesel production by two-step processes.
Bioresource Technology, v.101, p.7804-7811, 2010.
HE, M.; QIN, H.; YIN, X.; RUAN, Z.; TAN, F.; WU, B.;
SHUI, Z.; DAI, L.; HU, Q. Direct ethanol production from
dextran industrial waste water by Zymomonas mobilis. Korean
Journal of Chemical Engineering, v.31(11), p.2003-2007, 2014.
HILL, J.; NELSON, E.; TILMAN, D.; POLASKY, S.;
TIFFANY, D. Environmental, economic, and energetic costs
and benefits of biodiesel and ethanol biofuels. In: Proceedings
of the National Academy of Sciences, v.103, p.11206-11210,
2006.
HO, S.; WONG, Y.; CHANG, V. W. Evaluating the potential
of biodiesel (via recycled cooking oil) use in Singapore, an
urban city. Resources, Conservation and Recycling, v. 91,
p.117-124, 2014.
HORISAWA, S.; ANDO, H.; ARIGA, O.; SAKUMA, Y.
Direct ethanol production from cellulosic materials by
consolidated biological processing using the wood rot fungus
Schizophyllum commune. Bioresource Technology, v.197, p.37-
41, 2015.
IEA – International Energy Agency. Key world energy statistics.
Paris, 2014.
JACOBSON, K.; GOPINATH, R.; MEHER, L. C.; DALAI,
A. K. Solid acid catalyzed biodiesel production from waste
cooking oil. Applied Catalysis B: Environmental, v.85, p.86-91,
2008.
JAIN, S.; SHARMA, M. P. Kinetics of acid base catalyzed
transesterification of Jatropha curcas oil. Bioresource
Technology, v.101, p.7701-7706, 2010.
JANA, K.; DE, S. Polygeneration using agricultural waste:
Thermodynamic and economic feasibility study. Renewable
Energy, v.74, p.648-660, 2015.
JANG, M. G.; KIM, D. K.; PAR, S. C.; LEE, J. S.; KIM, S.
W. Biodiesel production from crude canola oil by two-step
enzymatic processes. Renewable Energy, v.42, p.99-104, 2012.
JEONG, G. T.; YANG, H. S.; PARK, D. H. Optimization of
transesterification of animal fat ester using response surface
methodology. Bioresource Technology, v.100, p.25-30, 2009.
JORGENSEN, A.; BIKKER, P.; HERMANN, I. T. Assessing
the greenhouse gas emissions from poultry fat biodiesel.
Journal of Cleaner Production, v.24, p.85-91, 2012.
JUAN, J. C.; KARTIKA, D. A.; WU, T. Y.; HIN, T. Y. Biodiesel
production from Jatropha oil by catalytic and non-catalytic
approaches: An overview. Bioresource Technology, v.102,
p.451-460, 2011.
JUNG, Y. R.; PARK, J. M.; HEO, S.; HONG, W.; LEE, S.; OH,
B.; PARK S.; SEO, J.; KIM, C. Cellulolytic enzymes produced
by a newly isolated soil fungus Penicillium sp. TG2 with
potential for use in cellulosic ethanol production. Renewable
Energy, v. 76, p.66-71, 2015.
KANNAN, G. R.; KARVEMBU, R.; ANAND, R. Effect
of metal based additive on performance emission and
combustion characteristics of diesel engine fuelled with
biodiesel. Applied Energy, v.88, p.3694-3703, 2011.
KANSEDO, J.; LEE, K. T.; BHATIA, S. Biodiesel production
from palm oil via heterogeneous transesterification. Biomass
Bioenergy, v.33, p.271-276, 2009.
KAPTUROWSKA, A. U.; STOLARZEWICZ, I. A.;
KRZYCZKOWSKA, J.; FLORJARICZYK, E. B. Studies on
the lipolytic activity of sonicated enzymes from Yarrowia
lipolytica. Ultrasonics Sonochemistry, v.19, p.186-191, 2012.
KAWENTAR, W. A.; BUDIMAN, A. Synthesis of biodiesel
from second-used cooking oil. Energy Procedia, v.32, p.190-
199, 2013.
KHUONG, L. D.; KONDO, R.; DE LEON, R.; ANH, T. K.;
MEGURO, S.; SHIMIZU, K.; KAMEI, I. Effect of chemical
factors on integrated fungal fermentation of sugarcane
bagasse for ethanol production by a white-rot fungus, Phlebia
sp. MG-60. Bioresource Technology, v.167, p.33-40, 2014.
KIVEVELE, T. T.; MBARAWA, M. M.; BERECZKY, A.;
LAZA, T.; MADARASZ, J. Impact of antioxidant additives
on the oxidation stability of biodiesel produced from Croton
megalocarupus oil. Fuel Processing Technology, v.92, p.1244-
1248, 2011.
KNOTHE, G. Biodiesel and renewable diesel: A comparison.
Progress in Energy and Combustion Science, v.36, p.364-373,
2010.
KUMAR, G.; KUMAR, D.; POONAM; JOHARI, R.; SINGH
C. P. Enzymatic transesterification of Jatropha curcas oil
assisted by ultrasonication. Ultrasonics Sonochemistry, v.18,
p.923-927, 2011.
KUMAR, S.; DHEERAN, P.; SINGH, S. P.; MISHRA, I. M.;
ADHIKARI, D. K. Continuous ethanol production from
sugarcane bagasse hydrolysate at high temperature with cell
recycle and in-situ recovery of ethanol. Chemical Engineering
Science, v.138, p.524-530, 2015.
LI, J. B.; ZHOU, P. F.; LIU, H. M.; LIN, J. H.; GONG, Y.
X.; XIAO, W. J.; LIU, Z. H. Monosaccharides and ethanol
Revista Brasileira de Engenharia e Sustentabilidade, v.1, n.1, p.1-12, dez. 2015.
Biofuels: Status quo and future challenges – a review 11
production from superfine ground sugarcane bagasse using
enzyme cocktail. Bioresources, v.9(2), p.2529-2540, 2014.
LI, L.; GE, Y.; WANG, M.; PENG, Z.; SONG, Y.; ZHANG,
L.; YUAN, W. Exhaust and evaporative emissions from
motorcycles fueled with ethanol gasoline blends. Science of
the Total Environment, v.502, p.627-631, 2015.
LIDE, D. R. Handbook of Chemistry and Physics. 88th ed.
CRC Press; 2008.
LIU, X.; HE, H.; WANG, Y.; ZHU, S.; PIAO, X.
Transesterification of soybean oil to biodiesel using CaO as a
solid base catalyst. Fuel, v.87, p.216-221, 2008.
MANZETTI, S.; ANDERSEN, O. A review of emission
products from bioethanol and its blends with gasoline.
Background for new guidelines for emission control. Fuel, v.
140, p. 293-301, 2015.
MCCARTHY, P.; RASUL, M. G.; MOAZZEM, S. Comparison
of the performance and emissions of different biodiesel blends
against petroleum diesel. International Journal of Low-Carbon
Technologies, v.6, p.255-260, 2011.
MENDOW, G.; VEIZAGA, N. S.; QUERINI, C. A. Ethyl
ester production by homogenous alkaline transesterification:
Influence of the catalyst. Bioresource Technology, v.102,
p.6385-6391, 2011.
NAIK, S. N.; GOUD, V. V.; ROUT, P. K.; DALAI, A. K.
Production of first and second generation biofuels: A
comprehensive review. Renewable & Sustainable Energy
Reviews, v.14, p.578-597, 2010.
NAIR, P.; SINGH, B.; UPADHYAY, S. N.; SHARMA, Y.
C. Synthesis of biodiesel from low FFA waste frying oil
using calcium oxide derived from Mereterix mereterix as a
heterogeneous catalyst. Journal of Cleaner Production, v.29-30,
p.82-90, 2012.
NAKAGAKI, S.; BAIL, A.; SANTOS, V. C.; SOUZA, V. H. R.;
VRUBEL, H.; NUNES, F. S.; RAMOS, L. P. Use of anhydrous
sodium molybdate as an efficient heterogeneous catalyst for
soybean oil methanolysis. Applied Catalysis A: General, v.351,
p.267-274, 2008.
NIZAH, M. F. R.; TAUFIQ-YAP, Y. H.; RASHID, U.; TEO, S.
H.; NUR, Z. A. S.; ISLAM, A. Production of biodiesel from
non-edible Jatropha curcas oil via transesterification using
Bi2O3–La2O3 catalyst. Energy Conversion and Management,
v. 88, p. 1257–1262, 2014.
OMAR, W. N. N. W.; AMIN, N. A. S. Biodiesel production
from waste cooking oil over alkaline modified zirconia
catalyst. Fuel Processing Technology, v.92, p.2397-2405, 2011.
OTERA, J. Transesterification. Chemichal Reviews, v.93,
p.1449-1470, 1993.
PAPANIKOLAOU, S.; DIMOU, A.; FAKAS, S.;
DIAMANTOPOULOU, P.; PHILIPPOUSSIS, A.;
PANAYOTOU, M. G.; AGGELIS, G. Biotechnological
conversion of waste cooking olive oil into lipid-rich biomass
using Aspergillus and Penicillium strains. Journal of Applied
Microbiology, v.110, p.1138-1150, 2011.
PÉREZ, A.; CASAS, A.; FERNÁNDEZ, C. M.; RAMOS, M.
J.; RODRÍGUEZ, L. Winterization of peanut biodiesel to
improve the cold flow properties. Bioresource Technology,
v.101, p.7375-7381, 2010.
QI, D. H.; CHEN, H.; GENG, L. M.; BIAN, Y. Z. Effect of
diethyl ether and ethanol additives on the combustion and
emission characteristics of biodiesel-diesel blended fuel
engine. Renewable Energy, v.36, p.1252-1258, 2011.
RATHMANN, R.; SZKLO, A.; SCHAEFFER, R. Targets and
results of the Brazilian Biodiesel Incentive Program – has it
reached the promised land? Applied Energy, v.97, p.91-100,
2012.
SANTORI, G.; DI NICOLA, G.; MOGLIE, M.; POLONARA,
F. A review analyzing the industrial biodiesel production
practice starting from vegetable oil refining. Applied Energy,
v.92, p.109-132, 2012.
SCOVRONICK, N.; WILKINSON P. The impact of biofuelinduced food-price inflation on dietary greenhouse gas emissions.
Global Environmental Change, v.23, p.1587-1593, 2013.
SHIN, H.; LEE, S.; RYU, J.; BAE, S. Biodiesel production
from waste lard using supercritical methanol. The Journal of
Supercritical Fluids, v.61, p.134-138, 2012.
SHUIT, S. H.; LEE, K. T.; KAMARUDDIN, A. H.; YUSUP,
S. Reactive extraction and in situ esterification of Jatropha
curcas L. seeds for the production of biodiesel. Fuel, v.89,
p.527-530, 2010.
SIDDIQUEE, M. N.; ROHAMI, S. Experimental analysis of
lipid extraction and biodiesel production from wasterwater
sludge. Fuel Processing Technology, v.92, p.2241-2251, 2011.
SRIMHAN, P.; KONGNUM, K.; TAWEERODJANAKAM,
S.; HONGPATTARAKERE, T. Selection of lipase producing
yeasts for methanol-tolerant biocatalyst as whole cell
application for palm-oil transesterification. Food and
Bioproducts Processing, v.89, p.457-462, 2011.
STAMENKOVIC, O. S.; LAZIC, M. L.; TODOROVIC, Z.
B.; VELJKOVIC, V. B.; SKALA, D. U. The effect of agitation
intensity on alkali-catalyzed methanolysis of sunflower oil.
Bioresource Technology, v.98, p.2688-2699, 2007.
SUN, H.; DING, Y.; DUAN, J.; ZHANG, Q.; WANG, Z.;
LOU, H.; ZHENG, X. Transesterification of sunflower oil
to biodiesel on ZrO2 supported La2O3 catalyst. Bioresource
Technology, v.101, p.953–958, 2010.
SZATMARI, P. Petroleum formation by Fischer-Tropsch
synthesis in the Santos basin, offshore Brazil. Geochimica et
Cosmochimica Acta, v.74, p.A1017-A1017, 2010.
TEO, S. H.; GOTO, M.; TAUFIQ-YAP, Y. H. Biodiesel
production from Jatropha curcas L. oil with Ca and La mixed
oxide catalyst in near supercritical methanol conditions. The
Journal of Supercritical Fluids, v. 104, p. 243-250, 2015.
TSIROPOULOS, L.; FAAIJ, A.; SEABRA, J.; LUNDQUIST,
L.; SCHENKER, U.; BRIOIS, J.; PATEL, M. Life cycle
assessment of sugarcane ethanol production in India in
comparison to Brazil. The International Journal of Life Cycle
Assessment, v.19(5), p.1049-1067, 2014.
ULLAH, Z.; BUSTAM, M. A.; MAN, Z. Biodiesel production
from waste cooking oil by acidic ionic liquid as a catalyst.
Renewable Energy, v. 77, p. 521-526, 2015.
UNITED STATES. EPA – Environmental Protection Agency.
Guidance for Biodiesel Producers and Biodiesel Blenders/
Users. EPA 420-B07-019. Washington, DC, 2007.
VERGRAGT, P. J.; MARKUSSON, N.; KARLSSON, H.
Carbon capture and storage, bio-energy with carbon and
capture storage, and the escape from the fossil-fuel lock-in.
Global Environmental Change, v.21, p.282-292, 2011.
XIE, W.; WANG, T. Biodiesel production from soybean oil
transesteri!cation using tin oxide-supported WO3 catalysts.
Fuel Processing Technology, v.109, p.150-155, 2013.
YUZBASHEV, T. V.; YUZBASHEVA, E. Y.; VIBRONAYA, T.
V.; SOBOLEVSKAYA, T. I.; LAPTEV, I. A.; GAVRIKOV, A. V.;
12 Marques et al
Revista Brasileira de Engenharia e Sustentabilidade, v.1, n.1, p.1-12, dez. 2015.
SINEOKY, S. P. Production of recombinant Rhizopus oryzae
lipase by the yeast Yarrowia lipolytica results in increased
enzymatic thermostability. Protein Expression and Purification,
v. 82, p. 83-89, 2012.
ZHANG, H; OZTURK, U. A.; WANG, Q.; ZHAO, Z.
Biodiesel produced by waste cooking oil: Review of recycling
modes in China, the US and Japan. Renewable and Sustainable
Energy Reviews, v.38, p.677-685, 2014.
ZHANG, W.; MA, H.; WANG, Q.; ZHAO, F.; XIAO, Z.
Pretreatment technology for suspended solids and oil removal
in an ethanol fermentation broth from food waste separated
by pervaporation process. Desalination, v.293, p.112-117,
2012.
ZHANG, Z.; WONG, H.H.; ALBERTSON, P. L.; HARRISON,
M. D.; DOHERTY, W. O. S.; O’HARA, I. M. Effects of
glycerol on enzymatic hydrolysis and ethanol production
using sugarcane bagasse pretreated by acidified glycerol
solution. Bioresource Technology, v.192, p.367-373, 2015.