ESTUDO DA OBTENÇÃO DE NANOPARTÍCULAS DE TIO2 PELOS MÉTODOS SOLVOTÉRMICO ASSISTIDO POR MICRO-ONDAS E SOL-GEL

  • Juliana Neumann Seixas
  • Gabriela Escobar Hochmuller da Silva
  • Leulomar Enedino do Nascimento
  • Nivaldo Freire de Andrade Netro
  • Fabiana Villela da Motta
  • Neftalí Lênnin Villareal Carreño

Résumé

Nanopartículas de dióxido de titânio (TiO2) possuem elevado potencial para aplicação ambiental em função de suas propriedades fotocatalíticas. Entretanto, para otimizar tais propriedades, o tamanho de partícula, estrutura, fase e área super cial são parâmetros que necessitam de especial atenção durante a síntese. A utilização de diferentes métodos de obtenção possibilita o controle destas características. Nesse trabalho, pós de TiO2 foram obtidos pelos métodos solvotérmico assistida por micro-ondas e sol-gel para avaliação das cristalinidades, fases e morfologias obtidas. Os difratogramas indicam que a fase anatase foi obtida para ambas as metodologias, com a cristalinidade sendo inferior para a metodologia solvotérmica e para a metodologia sol-gel quando não foi realizada a calcinação. Além disso, na metodologia sol-gel, para maiores temperaturas de calcinação, ocorre menor formação de agregados, adicionalmente foi possível observar a formação de anéis de TiO2, ainda que com presença irregular.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Références

ARCONADA, N. et al. Synthesis and photocatalytic properties
of dense and porous TiO2-anatase thin flms prepared by solgel. Applied Catalysis B: Environmental, v. 86, n. 1–2, p. 1–7,
2009.
BEHNAJADY, M. A. et al. Sol-Gel Low-temperature Synthesis
of Stable Anatase-type TiO2 Nanoparticles Under Diferent
Conditions and its Photocatalytic Activity. Photochemistry and
Photobiology, v. 87, p. 1002–1008, 2011.
BESSEKHOUAD, Y.; ROBERT, D.; WEBER, J. V. Preparation
of TiO2 nanoparticles by Sol-Gel route. International Journal
of Photoenergy, v. 5, n. January, p. 2–7, 2003.
BIAN, Z. et al. Solvothermal synthesis of well-defned TiO2
mesoporous nanotubes with enhanced photocatalytic activity.
Chemical Communications, v. 46, n. 44, p. 8451–8453, 2010.
CRAWFORD, G. A. et al. Microstructure and deformation
behavior of biocompatible TiO2 nanotubes on titanium substrate.
Acta Biomaterialia, v. 3, n. 3 SPEC. ISS., p. 359–367, 2007.
DI PAOLA, A.; BELLARDITA, M.; PALMISANO, L. Brookite,
the Least Known TiO2 Photocatalyst. [s.l: s.n.]. v. 3
FAN, Z. et al. Solvothermal synthesis of hierarchical TiO
2 nanostructures with tunable morphology and enhanced
photocatalytic activity. Applied Surface Science, v. 360, p. 298–
305, 2016.
GUPTA, S.; TRIPATHI, M. A review on the synthesis of TiO2
nanoparticles by solution route. Open Chemistry, v. 10, n. 2,
2012.
HAIDER, A. J. et al. Exploring potential Environmental
applications of TiO2 Nanoparticles. Energy Procedia, v. 119, p.
332–345, 2017.
HANAOR, D. A. H.; SORRELL, C. C. Review of the anatase to
rutile phase transformation. Journal of Materials Science, v. 46,
n. 4, p. 855–874, 2011.
HOU, X. G. et al. Preparation and studies of photocatalytic
silver-loaded TiO2flms by hybrid sol-gel method. Chemical
Engineering Journal, v. 146, n. 1, p. 42–48, 2009.
IN, S. IL; VAUGHN, D. D.; SCHAAK, R. E. Hybrid CuOTiO2 hollow nanocubes for photocatalytic conversion of CO2
into methane under solar irradiation. Angewandte Chemie -
International Edition, v. 51, n. 16, p. 3915–3918, 2012.
KIM, D. S.; KWAK, S. Y. Te hydrothermal synthesis of
mesoporous TiO2with high crystallinity, thermal stability, large
surface area, and enhanced photocatalytic activity. Applied
Catalysis A: General, v. 323, p. 110–118, 2007.
LÓPEZ, R.; GÓMEZ, R.; LLANOS, M. E. Photophysical and
photocatalytic properties of nanosized copper-doped titania solgel catalysts. Catalysis Today, v. 148, n. 1–2, p. 103–108, 2010.
23
Seixas et al.
Revista Brasileira de Engenharia e Sustentabilidade, v.5, especial, p.18-24, dez. 2018
MACWAN, D. P.; DAVE, P. N.; CHATURVEDI, S. A review on
nano-TiO2sol-gel type syntheses and its applications. Journal of
Materials Science, v. 46, n. 11, p. 3669–3686, 2011.
SUPPHASRIRONGJAROEN, P. et al. Efect of quenching
medium on photocatalytic activity of nano-TiO2 prepared by
solvothermal method. Chemical Engineering Journal, v. 138,
n. 1–3, p. 622–627, 2008.
TSUCHIYA, H. et al. Nanotube Layers With Metallic
Nanoparticles. Journal of Physics: Conference Series, v. 165,
p. 012037, 2009.
WANG, H. et al. Single-Crystalline Rutile TiO2 Hollow Spheres:
Room-Temperature Synthesis, Tailored Visible-Light-Extinction
and Efective Scattering Layer for Quantum-Dot-Sensitized Solar
Cells. Journal of the American Chemical Society, p. 19102–
19109, 2011.
WANG, Y. et al. Review of the progress in preparing nano TiO:
An important environmental engineering material. Journal of
Environmental Sciences (China), v. 26, n. 11, p. 2139–2177,
2014.
YOU, Y. et al. Preparation of continuous TiO2fbers by sol-gel
method and its photocatalytic degradation on formaldehyde.
Applied Surface Science, v. 258, n. 8, p. 3469–3474, 2012.
ZHANG, X.; LIU, Q. Preparation and characterization of
titania photocatalyst co-doped with boron, nickel, and cerium.
Materials Letters, v. 62, n. 17–18, p. 2589–2592, 2008.
DEVIKALA, S. et al. AC conductivity studies of PMMA/TiO2
composites, Materials Today: Proceedings, Volume 5, Issue 2,
Part 3, 2018, Pages 8678-8682,
ZU, G. et al. Highly efcient mass determination of TiO2
nanotube arrays and its application in lithium-ion batteries,
Sustainable Materials and Technologies, Volume 18, 2018,
ANDRADE NETO, N. F. et al. Increase of antimicrobial and
photocatalytic properties of silver-doped PbS obtained by
sonochemical method, Journal of Materials Science: Materials
in Electronics, 2018, 10.1007/s10854-018-0031-z
Publiée
2021-11-30